
PHY2404S (2013) HW 3 Given Θ07Mar Due Θ21Mar

Question 1: One loop divergences of scalar Yang-Mills

Write down the Lagrangian for a Yang-Mills gauge field Aµ minimally coupled to a
complex scalar field Φ in the fundamental representation, and use it to find the vertices and
propagators at tree level. Do not choose any particular gauge group. Then choose any one-
loop diagram that you can build using your Feynman rules, and write down the expression
for it as an integral over loop momentum k. Estimate how this one-loop diagram will blow
up in the UV (at high k) but do not try to evaluate it explicitly.

Question 2: Large-N ’t Hooft expansion
Sometimes it is convenient to use the matrix representation of the Yang-Mills gauge field

Aµ. The propagator behaves like

〈0|T{Aµ(x)IJAν(0)KL}|0〉 = 〈0|T{AAµ (x)ABν (0)}|0〉(TA)IJ(TB)KL

∝ δAB(TA)IJ(TB)KL ∝ δILδ
K
J

This motivates the introduction of double line notation, in which the gauge information in
the Yang-Mills field is represented in Feynman graphs by (oriented) double lines rather than
single wavy lines. The propagator and vertices take the form

Motivated by the difficulty of solving QCD, suppose that we take the rank of the gauge
group N to become parametrically large (without altering matter couplings). The hope is
that 1/N will provide a perturbative handle on the physics. So we take

N → large , λ ≡ g2YMN = fixed

where λ is known as the ’t Hooft coupling.
Draw several examples of possible loop diagrams. Notice how some of them are planar,

in the sense that you can draw them on the paper without lifting your pen. Others are
non-planar. Figure out how many powers of λ and 1/N are attached to each type of graph,
just by using group theory data and the topology of the Feynman graph. Then, from the
patterns you see, argue that loop corrections in the Feynman graph expansion are organized
in a double perturbation expansion in powers of λ and powers of 1/N . (Do not try to prove
the double expansion rigorously.)
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Question 3: Rξ gauges
Consider an Abelian gauge field Aµ coupled to a complex scalar φ = 1√

2
(φ1 + iφ2) with

L = −1

4
F µνFµν − |Dµφ|2 − V (φ)

(a) Write down the infinitesimal form of the local U(1) gauge symmetry.
(b) Take the potential V (φ) to have the form we encountered earlier with the Mexican

Hat potential. Suppose that U(1) spontaneously breaks, with φ developing a vev along (say)
the φ1 direction. Expand

φ1(x) = v + h(x) , φ2(x) = ϕ(x) .

Choose the following gauge-fixing function (instead of, say, the Lorentz gauge) for this U(1)
symmetry:

G =
1√
ξ

(∂µA
µ − ξ e v ϕ)

Using this specific form of G, derive the Feynman rules (propagators and vertices) for all
fields. Show in particular that although the ghost and antighost decouple from the gauge
field they do not decouple from the Higgs.

Note: A generalization of this Rξ gauge to the non-Abelian gauge theory of the Standard
Model of particle physics is used to prove renormalizability. See Peskin & Schröder chapter
21 or Weinberg chapter 17 (volume II) for more details.

Question 4*: Supersymmetry [not compulsory; for extra credit only]
Supersymmetry is a special type of symmetry with a fermionic parameter that connects

bosonic and fermionic fields. Its generators Qα obey an algebra known as the super-Poincaré

algebra: {Qα, Qβ} = 2γµαβPµ , [P µ, Qα] = 0 , [Mµν , Qα] =
(
i
4
[γµ, γν ]

) β

α
Qβ , but this will not

concern us here.
Consider the free Wess-Zumino action for a complex scalar φ and a Weyl fermion χ,

L free
WZ =

(
∂µφ∗∂µφ+ iχ†σ̄ρ∂ρχ+ F ∗F

)
−m

[
φF +

i

2
χTσ2χ+ c.c.

]
(a) Use the equations of motion to show that φ and χ have the same mass. (Hint: you

may need to eliminate the auxiliary field F via its equation of motion to see this.) Does
the number of degrees of freedom in the bosonic sector of this model match the number of
degrees of freedom in the fermionic sector, both on-shell and off-shell? Explain.

(b) Show that the kinetic part of the above action is invariant under SUSY transforma-
tions of the form

δφ = −iεTσ2χ

δχ = εF + σρ∂ρφσ
2ε∗

δF = −iε†σ̄ρ∂ρχ
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where the supersymmetry parameter ε is a 2-component spinor of Grassmann numbers.
(c) Show that the mass term is also invariant under SUSY transformations.
(d) Show that the following specific interaction Lagrangian also respects SUSY:

L int
WZ =

{
F
∂W [φ]

∂φ
+
i

2

∂2W [φ]

∂φ2
χTσ2χ+ c.c.

}
where W is an arbitrary function of φ known as the superpotential. For the case W = gφ3/3,
write out the field equations for φ and χ (after eliminating F ).
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